
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 20. December 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Homework 13 HS 21

Exercise Class (Room & TA):
Submitted by:
Peer Feedback by:
Points:

Submission: This exercise sheet is not to be turned in. The solutions will be published at the end of
the week, before Christmas.

Exercise 13.1 Shortest path with negative edge weights (part I).

Let G = (V,E,w) be a graph with edge weights w : E → Z \ {0} and wmin = mine∈E w(e).

Since Dijkstra’s algorithm must not be used whenever some edge weights are negative (i.e., wmin < 0),
one could come up with the idea of applying a transformation to the edge weight of every edge e ∈ E,
namely w′(e) = w(e)−wmin + 1, such that all weights become positive, and then �nd a shortest path
P in G by running Dijkstra with these new edge weights w′.

Show that this is not a good idea by providing an example graph G with a weight function w, such
that the above approach �nds a path P that is not a shortest path in G (this path P can start from the
vertex of your choice). The example graph should have exactly 5 nodes and not all weights should be
negative.

Solution: Consider for example the following graph:

We have that wmin = mine∈E w(e) = −1, thus we add the value 1 − (−1) = 2 to every edge weight
to obtain the following transformed graph:

A shortest s-t-path in the trasformed graph is 〈s, u, v, t〉. However, there is a shorter path in the original
graph since the vertices 〈u, v, w, u〉 form a cycle with negative weight. Hence, for an arbitrary s-t-path
in the original graph, we can always �nd a path with smaller weight by following this cycle once more.

Exercise 13.2 Shortest path with negative edge weights (part II).

We consider the following graph:

1

3

2

4

5

6

1 2

4
1

4 - 4 2 5

1

3 1

5

1. What is the length of the shortest path from vertex 1 to vertex 6 ?

Solution: The shortest path from vertex 1 to vertex 6 is (1, 3, 5, 2, 6) and has length 5−4+1+1 =
3.

2. Consider Dijkstra’s algorithm (that fails here, because the graph has negative edge weights).
Which path length from vertex 1 to vertex 6 is Dijkstra computing? State the sets S, V \ S im-
mediately before Dijkstra is making its �rst error and explain in words what goes wrong.

Solution: With Dijkstra’s algorithm we �nd the path (1, 2, 6) having length 4. The �rst mistake
happens already after having processed vertex 1. The sets at that point in time are S = {1} and
V \S = {2, 3, 4, 5, 6}. To vertex 2, we know a path of length 3, to vertex 3 a path of length 5. To
the other vertices, we do not know a path so far. Hence, Dijkstra’s algorithm choses vertex 2 to
continue, i.e., includes 2 into S, which corresponds to the assumption, that we already know the
shortest path to this vertex. This is clearly a mistake, since the path (1, 3, 5, 2) has only length 2.

3. Which e�cient algorithm can be used to compute a shortest path from vertex 1 to vertex 6 in the
given graph? What is the running time of this algorithm in general, expressed in n, the number
of vertices, and m, the number of edges ?

Solution: We can use the algorithm of Bellman and Ford which runs in O(nm) time.

4. On the given graph, execute the algorithm by Floyd and Warshall to �nd all shortest paths. Ex-
press all entries of the (6 × 6 × 7)-table as 7 tables of size 6 × 6. (It is enough to state the path
length in the entry without the predecessor vertex.) Mark the entries in the table in which one
can see that the graph does not contain a negative cycle.

Solution: Each of the following tables corresponds to a �xed value k ∈ {0, 1, 2, 3, 4, 5, 6} and
contains the lengths of all shortest paths that use only vertices in {0, . . . , k}. Since all entries
on the diagonal are non-negative, we can conclude that the graph does not contain any negative
cycle.

2

from\to 1 2 3 4 5 6

1 0 3 5 ∞ ∞ ∞
2 1 0 4 ∞ 4 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 ∞ 1 ∞ 2 0 ∞
6 ∞ ∞ ∞ ∞ 2 0

k = 0

from\to 1 2 3 4 5 6

1 0 3 5 ∞ ∞ ∞
2 1 0 4 ∞ 4 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 ∞ 1 ∞ 2 0 ∞
6 ∞ ∞ ∞ ∞ 2 0

k = 1

from\to 1 2 3 4 5 6

1 0 3 5 ∞ 7 4

2 1 0 4 ∞ 4 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 2 1 5 2 0 2

6 ∞ ∞ ∞ ∞ 2 0

k = 2

from\to 1 2 3 4 5 6

1 0 3 5 6 1 4
2 1 0 4 5 0 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 2 1 5 2 0 2
6 ∞ ∞ ∞ ∞ 2 0

k = 3

from\to 1 2 3 4 5 6

1 0 3 5 6 1 4
2 1 0 4 5 0 1
3 ∞ ∞ 0 1 -4 ∞
4 ∞ ∞ ∞ 0 5 ∞
5 2 1 5 2 0 2
6 ∞ ∞ ∞ ∞ 2 0

k = 4

from\to 1 2 3 4 5 6

1 0 2 5 3 1 3

2 1 0 4 2 0 1
3 -2 -3 0 -2 -4 -2

4 7 6 10 0 5 7

5 2 1 5 2 0 2
6 4 3 7 4 2 0

k = 5

from\to 1 2 3 4 5 6

1 0 2 5 3 1 3
2 1 0 4 2 0 1
3 -2 -3 0 -2 -4 -2
4 7 6 10 0 5 7
5 2 1 5 2 0 2
6 4 3 7 4 2 0

k = 6

Exercise 13.3 Invariant and correctness of algorithm (This exercise is from the January 2020 ex-
am).

Given is a weighted directed acyclic graph G = (V,E,w), where V = {1, . . . , n}. The goal is to �nd

3

the length of the longest path in G.

Let’s �x some topological ordering of G and consider the array top[1, . . . , n] such that top[i] is a vertex
that is on the i-th position in the topological ordering.

Consider the following pseudocode

Algorithm 1 Find-length-of-longest-path(G, top)

L[1], . . . , L[n]← 0, . . . , 0
for i = 1, . . . , n do

v ← top[i]
L[v]← max

(u,v)∈E

{
L[u] + w

(
(u, v)

)}
return max

1≤i≤n
L[i]

Here we assume that maximum over the empty set is 0.

Show that the pseudocode above satis�es the following loop invariant INV(k) for 1 ≤ k ≤ n: After k
iterations of the for-loop, L[top[j]] contains the length of the longest path that ends with top[j] for all
1 ≤ j ≤ k.

Speci�cally, prove the following 3 assertions:

i) INV(1) holds.

ii) If INV(k) holds, then INV(k + 1) holds (for all 1 ≤ k < n).

iii) INV(n) implies that the algorithm correctly computes the length of the longest path.

State the running time of the algorithm described above in Θ-notation in terms of |V | and |E|. Justify
your answer.

Solution:

Proof of i).

In the �rst iteration we have v = top[1]. By the de�nition the �rst vertex in topological order has no
incoming edges. Thus, L[top[1]] gets assigned the maximum over the empty set, which we assume to
be 0. As a consequence, INV(1) holds as there is no longest path that ends at top[1] and L[top[1]] = 0.

Proof of ii).

In the (k + 1)-th iteration we have v = top[k + 1]. By the de�nition of topological ordering we have
that all u ∈ V with (u, top[k + 1]) ∈ E are in {top[1], . . . , top[k]}. The length of the longest path via
u ending at v can be decomposed into the length of the longest path ending at u plus the weight of
the edge (u, v). Therefore, given INV(k), i.e., L[top[j]] contains the length of the longest path for all
1 ≤ j ≤ k, the maximum max

(u,v)∈E

{
L[u] + w

(
(u, v)

)}
computes the length of the longest path ending

at v. Consequently, INV(k + 1) holds given INV(k) holds.

Proof of iii).

INV (n) implies that each entry L[v] contains the length of the longest path ending at v. Thus, com-
puting the maximum max

1≤i≤n
L[i] corresponds to computing the length of the longest path in G.

4

Running time:

The running time is in Θ(|E| + |V |). The loop takes time Θ(|E| + |V |) since
∑

v∈V deg−(v) = |E|,
and taking the maximum at the end takes time Θ(|V |).

Exercise 13.4 Underground world (This exercise is from the January 2021 exam).

a) Consider the following problem. The Swiss government is negotiating a deal with Elon Musk to
build a tunnel system between all major Swiss cities. They put their faith into you and consult you.
They present you with a map of Switzerland. For each pair of cities it depicts the cost of building
a bidirectional tunnel between them. The Swiss government asks you to determine the cheapest
possible tunnel system such that every city is reachable from every other city using the tunnel
network (possibly by a tour that visits other cities on the way).

i) Model the problem as a graph problem. Describe the set of vertices, the set of edges and the
weights in words. What is the corresponding graph problem ?

Solution: The map of Switzerland de�nes a undirected graph. There is a vertex v ∈ V for each
city. For each pair of cities u, v ∈ V we create an edge {u, v} ∈ E. The edge {u, v} gets a
weight w({u, v}) equal to the cost of building a tunnel between the cities u and v.

The graph problem corresponding to the computation of the cheapest possible tunnel system
is the computation of the minimum spanning tree in this graph.

ii) Use an algorithm from the lecture to solve the graph problem. State the name of the algorithm
and its running time in terms of |V | and |E| in Θ-notation.

Solution: We can compute the minimum spanning tree using Kruskal’s algorithm, which has
a running time of Θ(|E| log |V |).

b) Now, the Swiss tunneling society contacts the government and proposes to build the tunnel between
Basel and Geneva for half of Musk’s cost. Thus, the government contacts you again. They want you
to solve the following problem: Given the solution of the old problem in a) and an edge for which
the cost is divided by two, design an algorithm that updates the solution such that the new edge cost
is taken into account. In order to achieve full points, your algorithm must run in time O(|V |).

Hint: You are only allowed to use the solution from a), i.e. the set of tunnels in the chosen tunnel
system. You are not allowed to use any intermediate computation results from your algorithm in a).

i) Describe your algorithm (for example, via pseudocode). A high-level description is enough.

Solution: Let E1 be the edge set of the MST T1 from the previous part of the exercise.

We have to distinguish the following two cases:

A) The updated edge is part of E1: If the updated edge is already part of E1, E1 is also a MST
for the updated graph.

B) The updated edge is not part of E1: If the updated edge e = {u, v} ∈ E is not part of E1,
we observe that adding e to E1 creates a cycle C as E1 is a tree. In order to �x that and to
obtain the new MST E2, we remove the edge e′ with the largest cost from the cycle C in
(V,E1 ∪ {e}) by performing the following steps:

1) We compute the path P from u to v in T1 by performing BFS.

2) We extend the path P to a cycle C by adding the edge {u, v} to it.

5

3) We search the edge e′ ∈ C with the largest cost in C by iterating over all the edges of
C .

4) We return T2 = (V,E2) with E2 = (E1 ∪ {e}) \ {e′}.

ii) Prove the correctness of your algorithm and show that it runs in time O(|V |).

Solution:

Running time: Computing a path between u and v using BFS in 1) and searching the edge e′

also requires only O(|V |) in 3) both only requires O(|V |) because |E1| = |V | − 1. The other
steps are possible in constant time.

Correctness: In the case A) we just reduce the weight of an edge of the MST, thus, it trivially
stays the MST and our algorithm is correct.

The case B) works as follows:

Case e 6∈ MST of G′: If any MST of G′ (the new graph) does not contain e, then any MST of
G′ is an MST of G and vice versa, and the statement is true (in this case e is always the unique
maximal edge in the cycle C).

Case e ∈ MST of G′: We compare which edge Kruskal’s algorithm adds/rejects in G and G′.
Let the resulting trees be T = T1 and T ′ respectively. We prove (by induction over the steps of
the algorithm) that the algorithms make the same decisions except that e is accepted and e′ is
rejected for G′ (unless e = e′, then the decisions are completely identical). In other words, we
prove that T ′ = T2 ∩ {processed edges}.

The only di�erence between the two algorithms is that e is processed earlier for G′. Before
e is processed, it is clear that both algorithms make the same decisions. Similarly, after both
algorithms have processed e′, the accepted edge set has the same connected components (in
either case all vertices on C are connected with each other), so the algorithms make the same
decisions after e′ is processed.

When e is processed for G′, there are two cases. Either e = e′. In this case all other edges of C
have already been accepted, so e is rejected. In this case it is clear that the algorithms continue
to make the same decisions. Or e 6= e′. In this case, the accepted edge set is a subset of T2 \ {e},
so the endpoints of e are in di�erent connected components, and e is accepted.

In the remainder, we may assume e 6= e′. When e′ is processed for G′, all other edges of C are
already added, so e′ is rejected.

It remains to consider the steps of G′ between processing e and e′. In this stage, the accepted
edges for G form a subset of the accepted edges for G′. Namely, the latter set also contains
e. Therefore, it is clear that any edge rejected for G is also rejected for G′. On the other hand,
consider an edge ẽ that is accepted for G in this phase. When ẽ is processed for G′, the set of ac-
cepted edges is a subset of T2\{ẽ}, so the endpoints of ẽ are in di�erent connected components,
and ẽ is accepted for G′ as well.

Therefore, we have shown that the algorithms make the same decisions except that e is accepted
and e′ is rejected (or exactly the same decisions if e = e′). Hence, at termination the algorithm
outputs T ′ = T ∪ {e} \ {e′} = T2, as desired.

Exercise 13.5 Cheap �ights (This exercise is from the January 2020 exam).

6

Suppose that there are n airports in the country Examistan. Between some of them there are direct
�ights. For each airport there exists at least one direct �ight from this airport to some other airport.
Totally there are m di�erent direct �ights between the airports of Examistan.

For each direct �ight you know its cost. The cost of each �ight is a strictly positive integer.

You can assume that each airport is represented by its number, i.e. the set of airports is {1, . . . , n}.

a) Model these airports, direct �ights and their costs as a directed graph: give a precise description of
the vertices, the edges and the weights of the edges of the graph G = (V,E,w) involved (if possible,
in words and not formal).

Solution: Each airport is a vertex in the directed graph. Two vertices u, v ∈ V are connected by a
directed edge e ∈ E, if there exists a direct �ight starting from airport u to airport v. The weight
w(e) of the edge e = (u, v), is the cost of the direct �ight from u to v.

Notice that the graph might not be connected, but |E| ≥ |V |, since “For each airport there exists at
least one direct �ight from this airport to some other airport.”

In points b) and c) you can assume that the directed graph is represented by a data structure that allows
you to traverse the direct predecessors and direct successors of a vertex u in time O(deg−(u)) and
O(deg+(u)) respectively, where deg−(u) is the in-degree of vertex u and deg+(u) is the out-degree of
vertex u.

b) Suppose that you are at the airport S and you want to �ll the array d of minimal traveling costs to
each airport. That is, for each airport A, d[A] is a minimal cost that you must pay to travel from S
to A.

Name the most e�cient algorithm that was discussed in lectures which solves the corresponding
graph problem. If several such algorithms were described in lectures (with the same running time),
it is enough to name one of them. State the running time of this algorithm in Θ-notation in terms
of n and m.

Solution: Name of the algorithm used to solve this problem: Dijkstra’s Algorithm

Runtime: O(m+n log n) if implemented with Fibonnachy heap, O
(
(m+n) · log n

)
if implemented

with binary heap.

c) Now you want to know how many optimal routes there are to airport T . In other words, if cmin is
the minimal cost from S to T then you want to compute the number of routes from S to T of cost
cmin.

Assume that the array d from b) is already �lled. Provide an as e�cient as possible dynamic pro-
gramming algorithm that takes as input the graph G from task a), the array d from point b) and the
airports S and T , and outputs the number of routes from S to T of minimal cost.

Address the following aspects in your solution and state the running time of your algorithm:

1) De�nition of the DP table: What are the dimensions of the table DP [. . .] ? What is the meaning
of each entry ?

2) Computation of an entry: How can an entry be computed from the values of other entries ?
Specify the base cases, i.e., the entries that do not depend on others.

7

3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps ?

4) Extracting the solution: How can the �nal solution be extracted once the table has been �lled ?

5) Running time: What is the running time of your algorithm ? Provide it in Θ-notation in terms
of n and m, and justify your answer.

Solution:

Size of the DP table / Number of entries: We use a 1-dimensional DP table consisting of n entries.

Meaning of a table entry:

DP [i] is the number of optimal routes from S to the airport i.

Computation of an entry (initialization and recursion):

DP [S] = 1. If d[v] =∞, DP [v] = 0. If v 6= S and d[v] <∞, then

DP [v] =
∑

u:(u,v)∈E
d[u]+w((u,v))=d[v]

DP [u] .

Order of computation: The order of the array d. That is, if d[i] < d[j], then i is before j in this
order.

Computing the result: The result is contained in DP [T].

Running time in concise Θ-notation in terms of n and m. Justify your answer.

Hint: Note that the array d is a part of the input, so you don’t need to include the time that is required
to �ll this array to the running time here.

We need Θ(n log n) time to sort the array d. To �ll the DP table we need Θ(n + m), since the time
required to compute DP [v] is Θ(deg−(v) + 1), and

∑
v∈V Θ(deg−(v) + 1) = Θ(n+m). Hence the

running time of the algorithm described above is Θ(n log n + m).

8

